Skip to content →

Tag: Clayton Christensen

Innovator’s Business Model

image A few weeks back, I wrote a quick overview of Clayton Christensen’s explanation for how new technologies/products can “disrupt” existing products and technologies. In a nutshell, Christensen explains that new “disruptive innovations” succeed not because they win in a head-to-head comparison with existing products (i.e. laptops versus desktops), but because they have three things:

  1. Good enough performance in one area for a certain segment of users (i.e. laptops were generally good enough to run simple productivity applications)
  2. Very strong performance on an unrelated feature which eventually will become very important for more than one small niche (i.e. laptops were portable, desktops were not, and that became very important as consumers everywhere started demanding laptops)
  3. Have the potential to improve by leveraging their industry learning curve to the point where they can compete head-to-head with an existing product (i.e. laptops now can be as fast if not faster than most desktops)

But, while most people think of Christensen’s findings as applied to product and technology shifts, this model of how innovations overtake one another can be just as easily applied to business models.

A great example of this lies in the semiconductor industry. For years, the dominant business model for semiconductor companies was the Integrated Device Manufacturer (IDM) model – a business model whereby semiconductor companies both designed and manufactured their own product. The primary benefit of this was tighter integration of design and manufacturing. Semiconductor manufacturing is highly sophisticated, requiring all sorts of specialized processes and chemicals and equipment, and there are a great deal of intricacies between one’s designs and one’s manufacturing process. Having both design and manufacturing under one roof allowed IDMs to create better products more quickly as they were able to exploit the interplays between design and manufacturing and more readily correct problems as they arose. IDMs were also able to tweak their manufacturing processes to push specific features, letting IDMs differentiate their products from their peers.

image But, a new semiconductor model emerged in the early 1990s – the fabless model. Unlike the IDM model, fabless companies don’t own their own semiconductor factories (called fabs – hence the name “fabless”) and outsource their manufacturing to either IDMs with spare manufacturing capacity or dedicated contract manufacturers called foundries (the two largest of which are based in Taiwan).

At first, the industry scoffed at the fabless model. After all, these companies could not tightly link their designs to manufacturing, had to rely on the spare capacity of IDMs (who would readily take it away if they needed it) or on foundries in Taiwan, China, and Singapore which lagged the leading IDMs in manufacturing capability by several years.

But, the key to Christensen’s disruptive innovation model is not that the “new” is necessarily better than the “old,” but that it is good enough on one dimension and great on other, more important dimensions. So, while fabless companies were at first unable to keep up in terms of bleeding edge manufacturing technology with the dominant IDMs, the fabless model had a significant cost advantage (due to fabless companies not needing to build and operate expensive fabs) and strategic advantage, as their management could focus their resources and attention on building the best designs rather than also worrying about running a smooth manufacturing setup.

The result? Fabless companies like Xilinx, NVIDIA, Qualcomm, and Broadcom took the semiconductor industry by storm, growing rapidly and bringing their allies, the foundries, along with them to achieve technological parity with the leading IDMs. This model has been so successful that, today, much of the semiconductor space is either fabless or pursuing a fab-lite model (where they outsource significant volumes to foundries, while holding on to a few fabs only for certain products), and TSMC, the world’s largest foundry, is considered to be on par in manufacturing technology with the last few leading IDMs (i.e. Intel and Samsung). This gap has been closed so impressively, in fact, that former IDM-technology leaders like Texas Instruments and Fujitsu have now decided to rely on TSMC for their most advanced manufacturing technology.

To use Christensen’s logic: the fabless model was “good enough” on manufacturing technology for a niche of semiconductor companies, but great in terms of cost. This cost advantage helped the fabless companies and their allies, the foundries, to quickly move up the learning curve and advance in technological capability to the point where they disrupted the old IDM business model.

This type of disruptive business model innovation is not limited to imagethe semiconductor industry. A couple of weeks ago The Economist ran a great series of articles on the mobile phone “ecosystem” in emerging markets. The entire time while I was reading it, I was struck by the numerous ways in which the rise of the mobile phone in emerging markets was creating disruptive business models. One in particular caught my eye as something which was very similar to the fabless semiconductor model story: the so-called “Indian model” of managing a mobile phone network.

Traditional Western/Japanese mobile phone carriers like AT&T and Verizon set up very expensive networks using equipment that they purchase from telecommunications equipment providers like Nokia-Siemens, Alcatel-Lucent, and Ericsson. (In theory,) the carriers are able to invest heavily in their own networks to roll out new services and new coverage because they own their own networks and because they are able to charge customers, on average, ~$50/month. These investments (in theory) produce better networks and services which reinforce their ability to charge premium dollar on a per customer basis.

In emerging markets, this is much harder to pull off since customers don’t have enough money to pay $50/month. The “Indian model”, which began in emerging countries like India, is a way for carriers in  low-cost countries to adapt to the cost constraints imposed by the inability of customers to pay high $50/month bills, and is generally thought to consist of two pieces. The first involves having multiple carriers share large swaths of network infrastructure, something which many Western carriers shied away from due to intellectual property fears and questions of who would pay for maintenance/traffic/etc. Another plank of the “Indian model” is to outsource network management to equipment providers (Ericsson helped to pioneer this model, in much the same way that the foundries helped the first fabless companies take off) — again, something traditional carrier shied away from given the lack of control a firm would have over its own infrastructure and services.

Just as in the fabless semiconductor company case, this low-cost network management business model has many risks, but it has enabled carriers in India, Africa, and Latin America to focus on getting and retaining customers, rather than building expensive networks. The result? We’re starting to see some Western carriers adopt “Indian model” style innovations. One of the most prominent examples of this is Sprint’s deal to outsource its day-to-day network operations to Ericsson! Is this a sign that the “Indian model” might disrupt the traditional carrier model? Only time will tell, but I wouldn’t be surprised.

(Image credit) (Image credit – Foundry market share) (Image credit – mobile users via Economist)

3 Comments

Innovator’s Delight

imageKnowing my interest in tech strategy, a coworker recommended I pick up HBS professor Clayton Christensen’s “classic” book on disruptive innovation: The Innovator’s Dilemma. And, I have to say I was very impressed.

The book tries to answer a very interesting question: why do otherwise successful companies sometimes fail to keep up on innovation? Christensen’s answer is counter-intuitive but deep: the very factors that make a company successful, like listening to customer needs, make it difficult for successful companies to adopt disruptive innovations which create new markets and new capabilities.

This sounds completely irrational, and I was skeptical when I first heard it, but Christensen makes a very compelling case for it. He begins the book by considering the hard disk drive (HDD) industry. The reason for this is, as Christensen puts it (and this is merely page one of chapter one!):

“Those who study genetics avoid studying humans, because new generations come along only every thirty years or so, and so it takes a long time to understand the cause and effect of any changes. Instead, they study fruit flies, because fruit flies are conceived, born, mature, and die all within a single day. If you want to understand why something happens in business, study the disk drive industry. Those companies are the closest things to fruit flies that the business world will ever see.”

image From that oddly compelling start, Christensen applies multiple techniques to establish the grounds for his theory. He begins by admitting that his initial hypothesis for why some HDD companies successfully innovated had nothing to do with his current explanation and was something he called “the technology mudslide”: that because technology is constantly evolving and shifting (like a mudslide), companies which could not keep moving to stay afloat (i.e. by innovating) would slip and fall.

But, when he investigated the different types of technological innovations which hit the HDD industry, he found that the large companies were actually constantly innovating, developing new techniques and technologies to improve their products. Contrary to the opinion of many in the startup community, big companies did not lack innovative agility – in fact, they were the leaders in developing and acquiring the successful technologies which allowed them to make better and better products.
But, every now and then, when the basis of competition changed, like the shift to a smaller hard disk size to accommodate a new product category like minicomputers versus mainframes or laptops versus desktops, the big companies faltered.

From that profound yet seemingly innocuous observation grew a series of studies across a number of industries (the book covers industries ranging from hardcore technology like hard disk drives and computers to industries that you normally wouldn’t associate with rapid technological innovation like mechanical excavators, off-road motorbikes, and even discount retailing) which helped Christensen come to a basic logical story involving six distinct steps:

  1. Three things dictate a company’s strategy: resources, processes, and values. Any strategy that a company wishes to embark on will fail if the company doesn’t have the necessary resources (e.g. factories, talent, etc.), processes (e.g. organizational structure, manufacturing process, etc.), and values (e.g. how a company decides between different choices). It doesn’t matter if you have two of the three.
  2. Large, successful companies value listening to their customers. Successful companies became successful because they were able to create and market products that customers were willing to pay for. Companies that didn’t do this wouldn’t survive, and resources and processes which didn’t “get with the program” were either downsized or re-oriented.
  3. Successful companies help create ecosystems which are responsive to customer needs. Successful companies need to have ways of supporting their customers. This means they need to have or build channels (e.g. through a store, or online), services (e.g. repair, installation), standards (e.g. how products are qualified and work with one another), and partners (e.g. suppliers, ecosystem partners) which are all dedicated towards the same goal. If this weren’t true, the companies would all either fail or be replaced by companies which could “get with the program.”
  4. Large, successful companies value big opportunities. If you’re a $10 million company, you only need to generate an extra $1 million in sales to grow 10%. If you’re a $10 billion company, you need to find an extra $1 billion in sales to grow an equivalent amount. Is it any wonder, then, that large companies will look to large opportunities? After all, if companies started throwing significant resources or management effort on small opportunities, the company would quickly be passed up by its competitors.
  5. Successful companies don’t have the values or processes to push innovations aimed at unproven markets, which serve new customers and needs. Because successful companies value big opportunities which meet the needs of their customers and are embedded in ecosystems which help them do that, they will mobilize their resources and processes in the best way possible to fulfill and market those needs. And, in fact, that is what Christensen saw – in almost every market he studied, when the customers of successful companies needed a new feature or level of quality, successful companies were almost always successful at either leading or acquiring the innovation necessary to do that. But, when it came to experimental products offering slimmer profit margins and targeting new customers with new needs and new ecosystems in unproven markets, successful companies often failed, even if management made those new markets a priority, because those companies lacked the values and/or processes needed. After all, if you were working in IBM’s Mainframe division, why would you chase the lower-performance, lower-profit minicomputer industry and its unfamiliar set of customers and needs and distribution channels?
  6. Disruptive innovations tend to start as inferior products, but, over time improve and eventually displace older technologies. Using the previous example, while IBM’s mainframe division found it undesirable to enter the minicomputer market, the minicomputer players were very eager to “go North” and capture the higher performance and profitability that the mainframe players enjoyed. The result? Because of the values of the mainframe players as compared with the values of the minicomputer players, minicomputer companies focused on improving their technology to both service their customer’s needs and capture the mainframe business, resulting in one disruptive innovation replacing an older one.

image The most interesting thing that Christensen pointed out was that, in many cases, established companies actually beat new players to a disruptive innovation (as happened several times in the HDD and mechanical excavator industries)! But, because these companies lacked the necessary values, processes, and ecosystem, they were unable to successfully market them. Their success actually doomed them to failure!

But Christensen doesn’t stop with this multi-faceted and thorough look at why successful companies fail at disruptive innovation. He spends a sizable portion of the book explaining how companies can fight the “trappings” of success (i.e. by creating semi-independent organizations that can chase new markets and be excited about smaller opportunities), and even closes the book with an interesting “ahead-of-his-time” look (remember, this book was written over a decade ago!) at how to bring about electric cars.

I highly recommend this book to anyone interested in the technology industry or even, more broadly speaking, on understanding how to think about corporate strategy. While most business books on this subject use high-flying generalizations and poorly evaluated case studies, Christensen approaches each problem with a level of rigor and thoroughness that you rarely see in corporate boardrooms. His structured approach to explaining how disruptive innovations work, who tends to succeed at them, why, and how to conquer/adapt to them makes for a fascinating read, and, in my humble opinion, is a great example of how corporate strategy should be done – by combining well-researched data and structured thinking. To top it all, I can think of no higher praise than to say that this book, despite being written over a decade ago, has many parallels to strategic issues that companies face today (i.e. what will determine if cloud computing on netbooks can replace the traditional PC model? Will cleantech successfully replace coal and oil?), and has a number of deep insights into how venture capital firms and startups can succeed, as well as some insights into how to create organizations which can be innovative on more than just one level.

Book: The Innovator’s Dilemma by Clayton Christensen

(Image credit: hard disk drive) (Image credit: David and Goliath)

10 Comments
%d bloggers like this: